计算机视觉技术从 70 年代到现在,40 多年时间得到迅速发展,许多计算机视觉的应用出现在了生产生活领域。尤其是到了 2012 年,基于深度学习的图像识别技术出现,极大地提高了计算机视觉的识别精确度,在一些特定场景下,机器的识别错误率已经远低于人眼识别的错误率。与此同时,研究员也发现在真实世界中,那些细粒度,实例级级别的物体识别还存在很大的挑战!
为了能使这一领域得到快速突破,谷歌向全球 CV 领域的开发者们发送了 iNaturalist 2018 挑战赛的邀请函。iNaturalist 2018 挑战赛是 iNaturalist 和 Visipedia 合作举办的大型物种分类竞赛。这个挑战赛仅仅是 CVPR 2018 FGVC5 研讨会上的众多挑战之一。
以下是雷锋网对iNaturalist 2018挑战赛介绍的编译。
随着深度学习近些年的快速发展,机器视觉识别能力也在大大提高。目前已经可将计算机视觉技术应用于自动驾驶、行人检测、虚拟现实、表情识别等任务。然而,计算机视觉仍然面临着细粒度和实例级别领域的挑战。本月早些时候,我们发布了识别个别地标的实例级地标识别挑战。这个挑战中,我们专注于细粒度的视觉识别,即区分动植物物种,汽车和摩托车模型,建筑风格等。对于计算机来说,鉴别细粒度类别非常具有挑战性,因为许多类别的训练样本相对较少,存在的样本通常缺乏权威的训练标签,并且在照明,视角和物体遮挡方面都有很大的易变性。
为了能战胜这些困难和障碍,我们很高兴宣布 2018 年 iNaturalist 挑战赛(iNat-2018)正式启动报名。这是一项与 iNaturalist 和 Visipedia(简称 Visual Encyclopedia)合作举办的物种分类竞赛,是加州理工学院(Caltech)和康奈尔纽约校区(Cornell Tech)被评为 Google 重点研究奖的一个项目。第五届国际细粒度视觉分类研讨会(FGVC5)将在 CVPR 2018 上举办,在第一届 iNaturalist 挑战基础之上,iNat-2017,iNat-2018 跨越 8000 多种植物,动物和真菌类别,拥有共超过 45 万个训练图像样本。我们邀请参与者在 Kaggle 上参加比赛,最终的实验结果提交日期截止到今年的 6 月初。训练数据,注释和预训练模型链接都可以在我们的 GitHub 中找到。