京财时报

鏈哄櫒瀛︿範浜у搧瀹濆吀锛氳繖鏄璋锋瓕鍐呴儴

http://www.jingcsb.com/ 来源:网络整理 发布时间:2017-07-11 15:25:21

很多人的工作就是查看大量的内容,然后打上标签,例如标注出一张图片上是否有猫。一旦有足够的照片被标记为“猫”或者“非猫”,就形成了一个数据集,可以用来训练模型识猫。更准确一点说,是让模型以一定的置信水平预测一张照片中是否有猫。

很简单,是吧?

真正的挑战在于,让模型预测对于用户来说非常主观的东西,例如是否对一篇文章感兴趣或者提供电子邮件的回复建议。

而且模型训练需要很长的时间,获得一个完全标记的数据集可能非常昂贵,而错误的标签还会给产品带来巨大的负面影响。

该怎么办?

可以先从合理的假设开始,并且对这些假设进行广泛的讨论。

这些假设通常采用这样的形式:“对于在(某)情境下的(某)用户,我们假设用户更喜欢(这个)而不是(这个)”。然后尽快把这些假设放到原型里,收集反馈进行迭代。

建议为你的机器学习找一个外援,例如在相关领域有深入研究的专家。

接下来,你会发现哪些假设看起来更加“真实”。但是在大规模收集数据和打标签之前,最好让专家挑选一些真实用户数据进行关键的第二轮验证。

用户应该测试一个高保真的原型,感觉到在与一个AI进行交互。

通过这些实操验证,可以让专家创建一个AI功能的示例组合。然后把这些案例作为后续收集的路线图,进而生成一套强大的训练数据集,以及大规模的标签协议框架。

7.扩展思维,发挥创意

作为一个产品经理,可能都会得到一些令人抓狂的微调反馈,可能都有一些你再也不想打交道的工程师。

具体到机器学习这件事上,有一些微小的建议供参考。

对于一个机器学习的产品经理来说,规范太多可能会导致无意的锚定,进而束缚了工程师的创造力。要相信他们的直觉,鼓励他们不断试验,即便整个框架还不完整也可以开始用户测试。

机器学习是一个更具创造力和表现力的工程。但训练一个模型可能很慢,可视化的工具还不是很好,所以工程师在最终调整算法时,经常需要靠想象力……

所以产品经理需要一直帮助工程师走在以用户为中心的道路上。

要用不同的方法给工程师以启迪,要温和的给出批评意见,要帮助他们深入的理解产品原理和目标。

工程师越早展开迭代,机器学习体系的鲁棒性可能越好,你就越有可能推出具有影响力的AI产品。

结论

以上是我们在Google内部强调的七个要点。希望对于正在或者想要开发机器学习产品的你有所帮助。随着机器学习开始驱动越来越多的产品,我们更应该以人为中心,为人们提供独特、有价值、极好的产品体验。

【免责声明】 凡本站未注明来源为京财时报(www.jingcsb.com)的所有作品,均转载、编译或摘编自其它媒体,转载、编译或摘编的目的在于传递更多信息,并不代表本站赞同其观点和对其真实性负责。其他媒体、网站或个人转载使用时必须保留本站注明的文章来源,并自负法律责任。 如您不希望作品出现在本站,可联系我们要求撤下您的作品。联系邮箱:xinxifankuui@163.com

热文推荐

首页 | 新闻 | 财经 | 房产 | 娱乐 | 旅游 | 时尚 | 生活 | 科技 | 健康 | 汽车 | 教育 | 今日北京 | 电子报

Copyright © 2008-2016 备案号:京ICP备09109218号 网络视听许可证:1908457号 增值电信业务经营许可证:京-20080118
关于同意京财时报设立互联网站并提供新闻信息服务的批复

友情链接: 大粤日报 时尚周刊 京晨晚报 投资观察界 新讯网 西北商报网 万亿财富网 中国投资界 新尧网 中国证券期货 广东晨报